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Task: Text Simplification has numerous use-cases in education technology, targeted content creation and language learning.
Background: Data driven simplification requires costly parallel simplification pairs, moreover current public datasets on simplification
have been prone to noise. (Coster and Kauchak, 2011).

Objective: We aim to make use of unlabeled corpora of simple and complex sentences to learn simplification knowledge.

Results: Our analysis on public test data shows that the proposed model can perform text-simplification at both lexical and syntactic
levels, competitive to existing supervised methods and unsupervised methods.

Datasets: Training Losses:
An unlabeled dataset of simple and complex sentences = Reconstruction Loss: E-G, is trained to reconstruct

judiciously by partitioning the standard en-wikipedia simple sentences and E-G is trained to reconstruct
dump, using readability mefrics difficult sentences

Catesory #Sents _Ave. Ave  FE- Adversarial Loss: Distribution of Context vectors
Words FE  Range extracted by G, from a complex sentence should
Simple 720k 1823 76.67 74.9-79.16 resemble the context vectors from a simple sentence.

lex 720k 3503 726  5.66-9.93 : ege oo .
—omprer ¢ Diversification Loss: This helps E-G, to learn to

Architecture: generate simple context vectors distinguishable from
= Built based on the encode-attend-decode architecture complex context vectors.

= Encoder E, Decoders G, and G, use layers of GRUs Denoising Loss: Denoising is helpful to learn
» Discriminator and Classifier enforce losses on attention syntactic/structural transformations.
vectors SUCh tht GS generqtes Simple sentences , given Algorithm 1 Unsupervised simplification algo- Algorithm 2 Semi-supervised simplification algo-

rithm using denoising, reconstruction, adversarial rithm using denoising, reconstruction, adversar-

a n)' N p Uil C||' en COd er. and diversification losses. ial and diversification losses followed by cross-

Input: simple dataset S, complex dataset D. entropy loss using parallel data.
Lrec(06,) Laenoi(96, OF) Lrec(065) s Laenoi(9cs, OF) Input: simple dataset S, complex dataset D, par-

allel dataset A = (Sp, D))
Initialization phase:
repeat
Update O, O¢., g, using L jenoi
Update 0g, O¢., 0c, using L, ..
Update 8p, ¢ using Ludyv.p Laiv.C
until specified number of steps are completed
Adpversarial phase:

. repeat
Update O0g,0cg,,0c, using Lui ., Update O, O¢c., Oc, using Ljecnoi

r p Ldiv,Gsa Lrec Update Og,0c,,0c, using Liu.a,.
—{ Discriminator ]—' adv,D( D) Update @p, Oc using EadU,Da Ldz’v,C’ Ediv,Gsa Lrec

Ladvcs(Ok O¢,) until specified number of steps are completed Update €p, Oc using L4, D> Laiv,C
Update O, O¢, using L oss

Update Ok, O, using Lross
—’[ Classifier }—‘ Letassf.c(Oc) until specified number of steps are completed

Lclassf,Gs (65, BGS)
Unsupervised Training Semi-supervised Training

Initialization phase:
repeat

Update O, OGS, OGd USing Edenoi

Update O, 0., Oc, using L.

DeCGOdel‘ Update 0p, 6c using £adv,D »Cdiv,C

D until specified number of steps are completed
Adversarial phase:
repeat

Update O, Oq.,, G, using L jenoi

—
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Comparlsons with superwsed systems - NTS, SBMT, Types of mmphﬁcahons generated by the model:
PBSMT, UnSUper‘ﬂsed S)’Stems - UNMT, USMT, ST. Type of Simplification = Source Prediction
] Boll-h qunl-omqnl-ic and humqn evqluqtions qre Used .I.o Splitting Calvin Baker is an American novelist . .CalvinBakerisanAmerican.AmericanBakerisabirthplace

C o m p q re Wi |- h e Xi S-I-i n g b a S e I i n e s . Sentence Shortening During an interview ; Edwerd Gorey mentioned that Bawden  During an inFerview., Edvs{ard Gorey mentioned that Bawden

was one of his favorite artists , lamenting the fact that not  was one of his favorite artists .
many people remembered or knew about this fine artist .

. R Lexical Replacement In architectural decoration Small pieces of colored and iri- In impressive decoration Small pieces of colored and red-
SyStem FE-diff SARI BLEU Word-difft System Simpleness Fluency Relatedness descent shell have been used to create mosaics and inlays , dish shell have been used to create statues and inlays , which

which have been used to decorate walls , furniture and boxes . have been used to decorate walls , furniture and boxes .
UNTS+10K 10.45 35.29 76.13 2.38

UNTS 11.15 338 7424 355 UNTS+10K  57% 4.13 3.93

UNMT 660 3372 7084 074 o A o O Generated example outputs

USMT 13.84 32.11  87.36 -0.01 UNMT 40% 3.8 4.06

ST 54.38 1497 0.73 5.61 -
NTS 49% 413 3.26 Conclusion:

NTS 5.37 36.1  79.38  2.73 . .
SBMT 17.68 38.59 73.62 -0.84 SBMT 23% 4.26 4.06 - FII'S|' aﬂempt |'0WCII'CIS unsuperwsed neural text

PBSMT 9.14 3407 6779 226 PBSMT 53% 3.8 3.93 ) P :

T Y TRy TE—— L GHTILS 6% 2 simplification that relies only on unlabeled text corpora.
Judicious selection of training corpora through readability
Automatic Evaluation Manual Evaluation = |n future, would like to incorporate training schemes to

tackle complex syntactic simplification operations.
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