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Abstract

We focus on a conversational question answer-
ing task which combines the challenges of un-
derstanding questions in context and reason-
ing over evidence gathered from heterogeneous
sources like text, knowledge graphs, tables, and
infoboxes. Our method utilizes a graph struc-
tured representation to aggregate information
about a question and its context (i.e., the conver-
sation so far and evidence retrieved to find an
answer), while also harnessing the reasoning
and text generation capabilities of large lan-
guage models (LLMs). Graph embeddings are
directly injected into the LLM, bypassing the
token embedding layers, and learned end-to-
end by minimizing cross-entropy. Our model
maintains a memory module to track and up-
date past evidence, thus influencing the graph’s
structure, as the conversation evolves. Exper-
imental results on the ConvMix benchmark
(Christmann et al., 2022a) show that graph em-
beddings enhance the LLM’s ability to reason,
while the memory module provides robustness
against noise and retrieval errors.

1 Introduction

Conversational question answering is an informa-
tion seeking task where users engage in interactive
conversations with AI systems (Choi et al., 2018;
Reddy et al., 2019; Dalton et al., 2022). Unlike
traditional question answering applications (Ra-
jpurkar et al., 2016), conversational systems are
expected to track the context of a conversation,
i.e., remember previous questions and answers to
provide relevant responses in an ongoing dialogue.
The majority of prior work has studied different in-
stantiations of conversational question answering,
based on the simplifying assumption that answers
can be found in a single information source. Ex-
amples include querying knowledge graphs such
as Wikidata (Perez-Beltrachini et al., 2023; Christ-
mann et al., 2022a; Saha et al., 2018), identifying
answer spans in Wikipedia articles (Reddy et al.,

2019; Choi et al., 2018), and searching for answers
in table cells (Iyyer et al., 2017).

In this paper we focus on conversational ques-
tion answering over multiple and heterogeneous
information sources. Figure 1 shows an exam-
ple interaction from ConvMix (Christmann et al.,
2022b), a recently curated dataset, which combines
the challenges of understanding questions in con-
text, and retrieving their answers from multiple
sources. As can be seen, answers are located in
knowledge base triples (response to Q1), infoboxes
(responses to Q4 and Q5), and tables (responses
to Q2 and Q3). It is also possible for an answer
to be found in different sources which may in turn
disagree. Moreover, the interaction in Figure 1 dis-
plays the hallmarks of naturalistic dialogue. The
second question (Fact Rank? ) can only be inter-
preted by taking into account the topic of the con-
versation (i.e., the album Kid A ) mentioned in the
previous utterance. Follow-on questions are short
and may seem ungrammatical taken out of context.
As the conversation unfolds, the topic shifts from
the album Kid A to the Rolling Stone magazine;
Q4 in Figure 1 has no dependencies on previous
utterances and a hypothetical system would have
to recognize that a new topic is being introduced.

We propose a modeling approach to conversa-
tional question answering which integrates large
language models (LLMs) with graph-based rea-
soning. The core idea is to represent information
about a question and its context — such as the con-
versation so far and sources retrieved to find an
answer — through a dynamically generated graph
and size varies with each utterance. Our method uti-
lizes a graph structured representation (Gori et al.,
2005; Scarselli et al., 2009) to aggregate informa-
tion (and resolve conflicts) from multiple sources,
while also harnessing the reasoning and text gener-
ation capabilties of LLMs. Our graph network is
efficiently trained using gradients from the LLM.
Graph embeddings are directly injected into the



Q1: What is the release date of album Kid A?
A1: 2 October 2000
.

Q2: Fact Rank?
A2: 7
  

Q3: Ranking on Rolling Stone in 2009?
A3: 1

Q4: Editor?
A4: Noah Shachtman

Q5: Category?
A5: Popular culture

Query at Q3: What is the release date of album Kid A? 2 October 2000 Fact Rank? 7 Ranking
on Rolling Stone in 2009?
Example retrieved evidence:

- Rolling Stone, Editor, Noah Shachtman (Infobox)
- Rolling Stone, inception, 1967 (Triple)
- Kid A, publication, 2 October 2000 (Triple)
- Kid A, Publication Rolling Stone, Country US, Accolade The 100 Best Albums of Decade,
Year 2009, Rank 1 (Table)
- Kid A, Kid A is the fourth studio album by the English rock band Radio head, released on 2
October 2000 by Parlophone (Text)
- Kid A, Rolling Stone described the Kid A tour as "a revelation, exposing rock and roll
humanity" in the songs. (Text)

Figure 1: Example interaction (left) from the ConvMix development set (Christmann et al., 2022b) and relevant
evidence at query Q3 (right). Utterances Q1–Q3 explore the topic of album Kid A. Q4 transitions to the topic of
Rolling Stone magazine. The evidence is retrieved from diverse sources highlighted in red. Wikipedia text and
tables are prepended with their respective article title. Known entities are shown in blue. Underlined entities are
identified through string matching.
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Figure 2: Graph for retrieved evidence (subset) from Figure 1. Tokens within each instance create local subgraphs
in the form of a linear chain. Local subgraphs are connected through common entities (within <n> – </n>) to build
a global graph. Same color highlights connections between similar entities (some edges are omitted for clarity).

LLM, bypassing the token embedding layers, and
learned end-to-end by minimizing cross-entropy
loss. To manage topic shifts and keep track of the
conversation flow, we introduce a memory module
that stores evidence used to answer previous ques-
tions, thus allowing to re-use past information for
answering future questions. Our contributions are:

• A method to aggregate evidence from multiple
sources into a dynamic graph representation
for conversational question answering.

• We efficiently integrate the evidence-based
graph with LLMs for end-to-end training.

• We keep track of past evidence in a memory
module which is updated as the conversation
evolves and influences the graph structure and
its representation.

• Extensive experiments on the ConvMix
dataset (Christmann et al., 2022b), demon-
strate that graph structure enhances the LLM’s
ability to reason over multiple sources, while
the memory module affords robustness to
noise and retrieval errors.

2 Related Work

Conversational Question Answering Most pre-
vious work on conversational question answering
operates over a single infromation source such as
a knowledge graph, text passage, or table (Choi
et al., 2018; Reddy et al., 2019; Perez-Beltrachini
et al., 2023; Iyyer et al., 2017). Existing models
tend to be specialized, catering to isolated modal-
ities (e.g., text or tables), while a few approaches
adopt graph-based representations to organize the
conversation and available information (Shen et al.,
2019; Jain and Lapata, 2023; Kacupaj et al., 2021;
Mueller et al., 2019). A notable exception are
Christmann et al. (2023) who propose an end-to-
end model for multiple information sources. Specif-
ically, their method constructs a heterogeneous
graph based on evidence retrieved from tables, in-
foboxes, text snippets, and Wikidata triples. This
graph is iteratively pruned at inference time to a
smaller subgraph containing the answer (i.e., an
entity node) to the question.

Our work also integrates information from mul-
tiple sources into a graph. However, we do not
model question answering as a classification task,



but instead propose a generative model. We lever-
age graph representations and the reasoning ca-
pabilities of language models, without relying on
specialized inference procedures.

LLMs with Graphs A common approach to en-
coding graph structure for LLMs involves describ-
ing the graph in natural language so that it resem-
bles text (Ye et al., 2023; Wang et al., 2024). There
is no agreed consensus on how to convert graphs to
text, and most methods rely on hand-crafted rules.
Previous efforts have shown it is challenging for
LLMs to reason over graph representations (Fatemi
et al., 2024; Huang et al., 2024), even when explicit
prompts are given that describe the structure of the
graph in natural language (Huang et al., 2024). Per-
formance tends to be brittle and task dependent
(Wang et al., 2024; Fatemi et al., 2024).

Our work proposes a parameter-efficient method
for learning task-specific graph representations. It
is closest to Perozzi et al. (2024), who use graph
embeddings as soft-prompts to represent structured
data for LLMs. In a similar vein, Chai et al. (2023)
use prefix-tuning to integrate graph embeddings
with LLM attention layers. Their approach shows
promising results on small graphs with a few nodes
(∼20) and limited variability. It also relies on the
architecture of the LLM and may not seamlessly in-
tegrate with other models, e.g., Mixture-of-Experts
(MoE; Shazeer et al. 2017; Jacobs et al. 1991).

Retrieval-augmented Generation Our work in-
tegrates LLMs with graph structural information
based on evidence retrieved from the Wikidata
knowledge graph (Vrandečić and Krötzsch, 2014),
Wikipedia text, tables, and infoboxes. Although
we do not focus on retrieval as such, it plays a
key role in identifying information for building the
graph. Our approach can thus be viewed as a vari-
ant of retrieval augmented generation (RAG), since
it conditions generation on freshly retrieved evi-
dence based on user queries (Izacard et al., 2024;
Khandelwal et al., 2020; Guu et al., 2020).

3 Overview

We assume a conversational question answering
setting (Christmann et al., 2022b) that requires
resoning over Wikipedia facts attested in multi-
ple sources such as text, tables, infoboxes, and the
Wikidata knowledge graph (KG). Given interac-
tion I, our task is to answer question qt at turn t, tak-
ing into account retrieved evidence rt and previous

turns I[: t− 1] which consist of questions and their
answers ⟨qt, at⟩ (see Figure 1). To accomodate in-
formation from the conversation so far, we concate-
nate question qt at turn t with previous question-
answer pairs, i.e., Qt = [q1, a1 . . . qt−1, at−1, qt],
and use this to retrieve evidence.

As depicted in Figure 3, we adopt a modular
approach. Given query Qt, we retrieve and rank
relevant evidence (Section 4.1). We next organize
retrieved information into a graph (Section 4.3) and
learn graph embeddings using Graph Attention Net-
works (GAT; Velickovic et al. 2018; Brody et al.
2022). Finally, graph embeddings are injected in
a LLM by skipping the token embeddings layer
(Section 4.5). Unlike Christmann et al. (2023) who
extract answers from retrieved evidence, we gener-
ate them. Our model M is thus formulated as:

at = M (I[: t− 1], qt, rt; Θ) (1)

where qt is the current question, rt is the graph rep-
resenting retrieved evidence, I[: t− 1] are previous
turns, and Θ the parameters of our model which
are fine-tuned on task-specific data (Section 4.6).

4 Model

4.1 Evidence Retrieval

We adopt the retrieval pipeline outlined in Christ-
mann et al. (2022b). As mentioned earlier, informa-
tion is obtained from Wikipedia pages and the Wiki-
data KG using a query based on the current ques-
tion concatenated with previous question-answer
pairs. Retrieval takes place in two stages. Initially,
evidence is retrieved from the Wikidata KG, and
then followed by retrieval from Wikipedia.

We extract Wikidata triples (see 2 in Figure 3)
using CLOCQ (Christmann et al., 2022a), a re-
trieval engine specifically tailored to question an-
swering over knowledge bases. It preprocesses the
knowledge graph in a memory efficient manner and
returns the top-k triples based on query terms. Fig-
ure 3, shows a subset of relevant triples retrieved
for Q3 along with the KG entities EE .

We next obtain evidence pertaining to additional
Wikipedia sources by retrieving articles correspond-
ing to the entities in EE . These pages are subse-
quently processed to extract text, tables, and in-
foboxes (see 3 in Figure 3). Tables are linearized
by individually transforming each row into text and
concatenating it with corresponding column head-
ers. Infoboxes are linearized in a similar fashion



Query: What is the release date of album Kid A? 2 October 2000 Fact Rank? 7 Ranking on Rolling Stone in 2009?
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Kid A, publication, 2 October 2000
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Kid A, Publication Rolling Stone, Country US,
Accolade ..., Year 2009, Rank 1

Figure 3: Sketch of proposed architecture. 1 shows query Q3 from the interaction in Figure 1. 2 shows KG triples
retrieved with CLOCQ and their entities ( 3 ). Wikipedia articles for 3 are parsed to extract sentences, infoboxes
and tables. In 4 , retrieved evidence is ranked based on the current query using BM25. 5 creates an instruction
prompt based on the input query (see Appendix A for the prompt template). In 6 , a graph is constructed based on
top ranked instances. 7 depicts the learned graph neural network. Graph node embeddings are initialized using
LLM token embeddings that are separate from the base model. 8 shows the final embeddings which are passed
to the LLM and are obtained by concatenating prompt (prefix, suffix) and graph embeddings (shown in different
colors). 9 is the LLM without the token embedding layer.

by concatenating key-value pairs with header in-
formation (if available). KB triples are linearized
by a simple concatenation of individual elements.
Wikipedia text is split into sentences, each of which
serves as a separate piece of evidence.

The evidence collected at this stage can be ex-
tensive, potentially comprising of several thousand
instances, which would in turn lead to a very large
graph (see Section 4.3). To manage this, we employ
BM25 (Robertson and Zaragoza, 2009) to rank the
evidence against the query and retain only the best
scoring instances (see 4 in Figure 3). Let Et de-
note the set of top-k retrieved instances at turn t.

4.2 Evidence Memory
By design, we retrieve new evidence at every turn t,
which may suggest that every question introduces
a new topic. However, a well-known property of
conversational dialogue is topic inertia (Chai and
Jin, 2004), i.e., users tend to explore the same topic
for a while before switching to a new topic (see the
interaction in Figure 1). We propose to keep track
of past topics through a memory module which
stores previously retrieved pieces of evidence to be
re-utilized and re-ranked against Qt. Specifically,
at each turn t we define evidence memory Mt as,

Mt = ⊕{Ej | j ∈ [1 . . . t− 1]} (2)

where ⊕ denotes concatenation. We replace a pro-
portion (e.g., one third) of low-ranked instances
from Et with the top-ranking ones from Mt. We

employ the Sentence-BERT model (Reimers and
Gurevych, 2019) to re-rank the evidence stored in
Mt, using Qt as a query.

4.3 Graph Construction

Retrieved information is organized into a graph
(see 6 , Figure 3) by first converting individual
pieces of evidence into a linear chain. Local sub-
graphs are then merged into a global graph by link-
ing common entities between them. Figure 2 shows
example graphs with local and global connections.

To construct a local graph, evidence from dif-
ferent sources is linearized (as discussed in Sec-
tion 4.1) and tokenized using a base LLM tokenizer.
Tokens within each instance are treated as graph
nodes connected in a linear chain. In other words,
evidence w with tokens w1 . . . w|w| is represented
by local sub-graph w1 → w2 → . . .→ w|w|.

Connecting different pieces of evidence together
is critical for enabling more global reasoning. We
create a global graph by linking similar entities
across local subgraphs. In this context, entities are
KG items but also text spans in Wikipedia text, in-
foboxes, and tables gathered during retrieval. We
identify entity spans by performing string match-
ing against KG entities. In Figure 2, such entities
are encircled by <n> node </n> tags. Finally, en-
tity spans referring to same entity are linked, thus
creating a more globally connected graph.



4.4 Graph Encoder

Our model generates an answer at each turn t given
query Qt and graph Gt representing relevant evi-
dence (see Figure 3). More formally, Gt = (V, E) is
a directed graph with nodes V = {v1, v2, . . . , vn}
and edges E ⊆ V × V .

We do not learn graph node embeddings from
scratch. Instead, we initialize them using token
embeddings from a large language model (see 7 ,
Figure 3). This step is crucial for achieving fea-
ture alignment between the evidence graph and the
downstream LLM. Generally, integrating LLMs
with information from a different modality neces-
sitates aligning features between them. For exam-
ple, vision-language models like BLIP-2 (Li et al.,
2023) and LLaVA (Liu et al., 2023) perform fea-
ture alignment by heavily pretraining a network
whose goal is to act as a bridge between a frozen
image encoder and a frozen LLM. This approach
requires large amounts of pretraining data (as well
as computational resources) which are not read-
ily available for our task. We found that simply
initializing graph node embeddings with token em-
beddings from a base LLM is effective and crucial
for achieving good performance.

Let {xi | i ∈ [1, n]} denote the set of initial
node embeddings. We learn graph structure repre-
sentations with the Graph Attention Network (GAT;
Velickovic et al. 2018; Brody et al. 2022), a neural
network architecture designed for handling graph-
structured data. It is computationally efficient, it re-
quires less memory and storage compared to other
deep learning models, and is applicable to inductive
problems. GAT uses the attention mechanism to
weigh the importance of neighboring nodes when
aggregating information in a graph. Attention be-
tween two nodes is calculated as:

αij =
exp

(
ψ
(
xi, xj

))∑
k∈Ni

exp
(
ψ
(
xi, xk

)) (3)

where Ni = {vj ∈ V |
(
j, i

)
∈ E} are the neigh-

bors of node vi, and αij is the attention score
between node embeddings xi and xj . Follow-
ing Brody et al. (2022), we compute the scoring
function ψ as:

ψ
(
xi, xj

)
= aT LeakyReLU

(
W · [xi⊕xj ]

)
(4)

where ·T represents transposition and ⊕ is the con-
catenation operation. Attention coefficients corre-
sponding to each node i are then used to compute

a linear combination of the features corresponding
to neighboring nodes as:

xi = σ

∑
j∈Ni

αijWxj

 (5)

4.5 Integration with LLMs

The LLM takes as input a composite embded-
ding consisting of the graph embeddings discussed
above, and embeddings corresponing to a prompt
prefix Pprefix, and a prompt suffix Psuffix (see 5 in
Figure 3). Pprefix is an initial instruction prompt
and Psuffix represents the conversational query at
turn t to be answered. See Appendix A(Figure 6)
for an example prompt. More formally, LLM input
embeddings are obtained as:

H = Hprefix ⊕ Hg ⊕ Hsuffix (6)

where Hg is the list of embeddings of all graph
nodes and Hprefix is the text embedding of Pprefix:

Hprefix = Embed(Tok(Pprefix)) (7)

where Tok and Embed are the base LLM tok-
enizer and embedding layer, respectively. Psuffix
is encoded in a similar manner using Equation (7)
to obtain Hsuffix. We use the embeddings obtained
with Equation (6) as the initial token embeddings
for the pretrained LLM.

4.6 Training

Our model is trained end-to-end by optimizing
cross-entropy loss. For all variants (with and with-
out graph structure), the loss is calculated on com-
pletion tokens only, i.e., prompt tokens do not ob-
serve any loss. This is similar to setting the prompt
loss weight to 0 (Wang et al., 2023).

Given training instance ⟨I[: t−1], qt, rt; Θ⟩, and
sequence of gold output tokens ⟨a1t , a2t , . . . , a

|at|
t ⟩,

we minimize token-level cross-entropy as:

L
(
âit
)
= − log p

(
ait | I[: t− 1], qt, rt; Θ

)
(8)

where âit denotes the predicted output token at de-
coder step i. We use a mixed approach for training
the whole network. Our graph network is trained
from scratch, however, the base LLM is updated
using LoRA (Hu et al., 2022) in a parameter effi-
cient manner. We perform inference based on the
conversation context (i.e., I[: t − 1]) and current
query qt.



ConvMix-5T
Entities covered 5,418
Long-tail entities 2,511
conversations 2,800
Number of turns 5
Split ratio 60:20:20

ConvMix-10T test set
Conversations 200
Number of turns 10

Domains: Books, Movies, Music, TV series, Soccer
Answer Source: Text, Tables, Infobox Wikidata

Table 1: ConvMix dataset statistics. Long tail entities
are those attested in less than 50 KG facts.

5 Experimental Setup

We use Mistral-7B-Instruct-v0.2 (Jiang et al.,
2023) as our base model, given its good perfor-
mance across complex reasoning tasks, and wider
context window of 32K tokens. Recall that we re-
trieve and encode a large number of instances as
evidence for a question. Our implementation pre-
dominantly relies on PyTorch (Paszke et al., 2019).
We adapt the Mistral implementation available
at the HuggingFace Transformers library (Wolf
et al., 2020). For developing the graph neural net-
work, we utilize PyTorch Geometric (PyG; Fey
and Lenssen 2019). We use Hugging Face’s TRL
(Transformer Reinforcement Learning) library (von
Werra et al., 2020) for fine-tuning model without
graph. Additional training parameters and prompts
can be found in Appendices B and A, respectively.

5.1 Dataset

We evaluate our work on ConvMix (Christmann
et al., 2022b), a conversational question answering
dataset that requires reasoning over heterogeneous
sources, specifically Wikipedia text, infoboxes, ta-
bles, and the Wikidata KG. Aside from reasoning,
the conversational nature of ConvMix requires han-
dling discourse phenomena, such as coreference,
ellipsis, and topic-shift (Sun and Chai, 2007; Jain
and Lapata, 2021). Table 1 summarizes various
dataset statistics. As can be seen (first block), the
main dataset (CovMix-5T) contains 2,800 conver-
sations, each with five turns (i.e., question-answer
pairs), split into training, development, and test set.
In addition, ConvMix-10T is a separate test set
used to measure generalization on longer interac-
tions. It contains 200 conversations, each 10 turns
long (see last block in Table 1). We follow the
splits provided in Christmann et al. (2022b) and
report results on both test sets combined.

5.2 Evaluation Metrics

Our model generates answers which may be valid
but not identical to the gold standard (e.g., United
States, United States of America, and USA are all
paraphrases of the same concept). When there is
no exact match, we follow previous work (Christ-
mann et al., 2022b) and try to normalize the an-
swer to its canonical form. We use the Levenshtein
distance (Levenshtein, 1965) to measure the simi-
larity of the generated answer with entities in our
retrieved evidence set. The entity with the small-
est distance is used as the answer in such cases.
We report H@1 (i.e., precision at 1) and H@5
(i.e., whether an answer match is found within the
top 5 matching entities).

6 Results

Our experiments were designed to assess whether
graph structure enhances LLM performance for
our conversational question-answering task. Our
results are summarized in Table 2.

We evaluate our approach against Mistral-7B
variants without graph structure. Specifically, we
compare against (a) Mistral-7B zero-shot prompted
with top-k retrieved instances and the conversa-
tional history, i.e., the current query concatenated
with previous QA pairs (see Appendix A for the
prompt); and (b) Mistral-7B fine-tuned on the Con-
vMix training set using LoRA (Mistral-7B + FT)
and top-k retrieved instances. We present three
variants of our model, fine-tined with graph em-
beddings (Mistral-7B + Graph) and additionally
with a memory management component (+Mem-
ory, +Rand Memory).

We also compare with several state-of-the-art
systems built on top of T5 (Raffel et al., 2020).
T5-FiD (Christmann et al., 2022b) is a fusion-in-
decoder model which acts as a “generative reader”
and is trained on (top-k) retrieved instances and
gold answers. Specifically, query-evidence pairs
are encoded independently, and passed on to the
decoder to generate an answer. We also report
results with a T5-based model (T5-FiD + Question
rewriting) which rewrites the question based on
the conversational history context (Raposo et al.,
2022; Elgohary et al., 2019) and a related approach
(T5-FiD + Question resolution) which performs
query resolution, i.e., by appending relevant terms
from previous question-answer pairs to the current



Models H@1 H@5

Mistral-7B zero-shot 0.292 0.346
Mistral-7B + FT 0.350 0.400
Mistral-7B + Graph 0.425 0.459
Mistral-7B + Graph + Memory 0.445 0.512
Mistral-7B + Graph + Rand Memory 0.425 0.461

T5-FiD 0.300 0.350
T5-FiD + Question resolution 0.282 0.297
T5-FiD + Question rewriting 0.271 0.285

Convinse T5-FiD 0.342 0.386
EXPLAIGNN 0.406 0.561

Table 2: Model performance on the ConvMix dataset
(results are averaged for ConvMix-5T and convMix-
10T test sets). H@1 represents precision at 1 and H@5
represents a match at 5. A fine-tuned Mistral-7B with
graph embeddings and a memory module performs best.

question (Voskarides et al., 2020).1

Finally, although not directly comparable, we
report the performance of EXPLAIGNN (Christ-
mann et al., 2023) and Convinse T5-FiD (Christ-
mann et al., 2022b). EXPLAIGNN is a classifica-
tion model that identifies entity nodes in a graph as
answer predictions. It learns a task specific struc-
tured representation optimized for better retrieval
and query understanding. The learned representa-
tion is used to train a classification model based on
graph neural networks tying both of them together.
Convinse T5-FiD is similar in that it also learns a
task-specific structured representation for retrieval
and query understanding, without, however, creat-
ing a graph.

All models in Table 2 use the same retrieval en-
gine (i.e., CLOCQ; Christmann et al. 2022a) which
allows us to focus on architectural differences and
compare models on equal footing.

Integrating LLMs with graph-based reason-
ing boosts conversational QA performance. As
shown in Table 2, Mistral-7B + Graph is superior to
a plain fine-tuned version of Mistral-7B (+ FT) by a
large margin. This suggests that organizing and rep-
resenting retrieved evidence as a graph improves
reasoning compared to processing pieces of evi-
dence independently. Perhaps unsurprisingly, fine-
tuning generally improves Mistral’s performance
on the conversational QA task over a zero-shot
model. This is due to an improved understanding
of task requirements, like regular shift in focus

1All FiD models are based on T5-base (Christmann et al.,
2022b).

and answer format. For example, the model learns
to avoid verbosity in answers and respond using
dataset-specific conventions such as spelling out
the month in dates (e.g., 2 October 2002 instead of
2/10/2002 ). The performance of the T5-FiD sys-
tems is comparable to zero-shot Mistral-7B. In gen-
eral, we observe that performance improvements
are not simply due to increased model size. Rather,
it is important to model the conversational nature
of the task and interpret the retrieved information
more globally.

Adding a memory module improves QA pre-
cision. Table 2 shows that results further im-
prove when a memory module is added to our
model (+Graph +Memory). Recall that previously
retrieved instances are kept in memory and re-
reranked against the current query. To further as-
sess the usefulness of re-ranking, we conducted a
controlled experiment where evidence was selected
randomly from the memory. We observe that ran-
dom selection (+Rand Memory) amounts to not
having a memory component at all.

It is challenging to provide accurate answers
to questions that require numerical responses.
Figure 4a shows model performance broken down
by question domain. Overall, we observe simi-
lar trends across domains, with TV Series and
Soccer being most challenging. Performance for
these domains decreases by ∼10 percentage points,
e.g., in comparison to Books. To uncover the rea-
son for this gap, we further investigate whether
there is an effect of answer type. We automatically
annotate2 the ConvMix development set with the
following answer categories: strings, dates, and
numbers. The results in Table 3 (top) show average
H@1 stratified by different answer types.

We observe that questions with numeric answers
are harder compared to other categories. There are
several reasons for this, including variability in nu-
merical reasoning performance due to the choice of
numeric data tokenization by the base model (Singh
and Strouse, 2024; Sun et al., 2023). As well as
the effect of pre-training data on the output predic-
tions and their probability (McCoy et al., 2023).
Table 3b (bottom) reveals that the proportion of
instances with numeric answers is highest for the
TV Series and Soccer domains, thus explaining
why performance drops for these domains.

2We use regex and python-dateutil to automatically
categorize the answers.
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Figure 4: Analysis experiments for different model variants based on Mistral-7B prompted in a zero-shot setting,
fine-tuned on ConMix without graph embeddings (+FT), with graph embeddings (+Graph), and with a memory
module (+Graph +Memory). Performance degrades with numbers, tables, and later conversation turns.

(a) Answer Type Date String Number
H@1 0.50 0.45 0.14

(b) Domain Books Movies Music TV series Soccer
% Number 3.9 2.1 5.0 10.0 7.9

Table 3: Model performance (Mistral-7B + Graph +
Memory) across answer types (top) and proportion of
numeric answers per domain (ConvMix dev set).

It is challenging to extract accurate informa-
tion from tables. Figure 4b, shows how perfor-
mance varies depending on the source of the an-
swer. Across models, we observe that performance
deteriorates when the answers are located in tables.
On the contrary, performance is generally better
when answers are found in the knowledge graph.
We believe this performance gap is due to how tab-
ular information is linearized. In contrast to the
knowledge graph from which facts can be easily
extracted, Wikipedia tables often have complex hi-
erarchical structure (Parikh et al., 2020) making it
challenging to achieve clean and robust lineariza-
tion (Alonso et al., 2023).

It is more difficult to answer questions occur-
ring later in the conversation. In Figure 4c we
examine how performance varies with conversa-
tion length. Ideally, a model should be able to
answer questions irrespective of where these occur
(e.g., beginning or end). As mentioned in Sec-
tion 5.1, ConvMix contains conversations with a
maximum length of 10 turns. The results in Fig-
ure 4c show a general decrease in performance as
the dialogue progresses. Initial questions tend to
be more complex while follow-on questions often

extend or elaborate upon the initial topic (Chai
and Jin, 2004; Jain and Lapata, 2021). Our results
show that graph enhanced models generally out-
perform LLM variants which do not organize the
retrieved information in any way. Furthermore, we
observe that having a memory (of previously re-
trieved instances) is particularly helpful in longer
interactions. Keeping track of past evidence helps
ameliorate retrieval errors which might erroneously
steer the model towards new topics. Aside from
contextual factors, the quality of retrieval largely in-
fluences model precision, as approximately half of
the answers cannot be found even at the beginning
of the dialogue (see turn 1 in Figure 4c).

7 Conclusion

In this paper we propose a method to aggregate
evidence from multiple sources into a dynamic
graph representation for conversational question
answering. We demonstrate how this graph can
be efficiently integrated with large language mod-
els (LLMs) for end-to-end training, enhancing the
model’s ability to handle evolving conversational
contexts. Our approach maintains a memory mod-
ule to track and update past evidence, thus influ-
encing the graph’s structure and representation,
as the conversation evolves. Experiments on the
ConvMix dataset show that the graph enhances
the LLM’s ability to reason over multiple modali-
ties, while the memory module provides robustness
against noise and retrieval errors. In the future, we
would like to improve information retrieval for our
task, through using pretrained embeddings for bet-
ter entity linking. We could also adopt a structured
memory module for more complex reasoning.
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A Prompt Description

Figure 5 shows an example prompt for the
Mistral-7B model without graph embeddings (see
Mistral-7B zero-shot in Table 2). The prompt
includes a sequence of retrieved and ranked
pieces of evidence, each encapsulated within
<evidence>–</evidence> tags. We represent the
past interaction I[: t − 1] as a series of question
and answer pairs. The same prompt is used for
fine-tuning (see Mistral-7B + FT in Table 2) with
the subsequent response as the gold output tokens
(see Section 4.6 for details).

Figure 6 shows an example prompt for the graph-
based model (all model variants with +Graph in
Table 2). The prompt consists of three parts, the
initial instructions which we refer to as Pprefix, a
sequence of graph node embeddings represented as
graph_node_embedding, and the conversational
query which we denote as Psuffix.

B Training Details

Table 4 list the hyper-parameters employed to train
our model. Implementation details are discussed
in Section 5. During the fine-tuning of the base
language model, only the query, key, and value
projection parameters are updated.

Parameter Value
Graph layers 2
Graph heads 2
Lora rank 128
Lora α 32
Lora dropout 0.05
GAT Dropout 0.5
Optimizer Adam (Kingma and Ba,

2015)
Learning rate 5e-5
Batch size 1
Gradient accumulation 4

Table 4: Hyperparameter values used for our model.



Prompt: Mistral-7B zero shot and fine-tuned without graph embeddings

[INST]

You are a helpful assistant. Using the following facts:

<evidence>Kid A, publication, 2 October 2000</evidence>

<evidence>Rolling Stone, Editor, Noah Shachtman</evidence>

<evidence>Rolling Stone, Catgories, Popular culture</evidence>

<evidence>Publication Fact, Country UK, Accolade The 100 Best Albums of the 2000s, Year 2010, Rank 7</evidence>

<evidence>Publication Rolling Stone, Country US, Accolade The 100 Best Albums of the decade, Year 2009,
Rank 1</evidence>

<evidence>Rolling Stone was founded in San Francisco in 1967 by Jann Wenner and Ralph J. Gleason.</evidence>

Answer the following conversational query as a simple key fact without description:

[/INST]

Question: What is the release date of album Kid A?
Answer: 2 October 2000
Question: Fact Rank?
Answer: 7
Question: Ranking on Rolling Stone in 2009?
Answer:

Figure 5: Example prompt for models which do not employ graph embeddings. Only a few relevant pieces of
evidence are shown, for the sake of brevity.

Prompt: Mistral-7B fine-tuned with graph embeddings

[INST]

You are a helpful assistant. Using the following facts:

[graph_node_embedding_1, graph_node_embedding_2, ... , graph_node_embedding_n]

Answer the following conversational query as a simple key fact without description:

[/INST]

Question: What is the release date of album Kid A?
Answer: 2 October 2000
Question: Fact Rank?
Answer: 7
Question: Ranking on Rolling Stone in 2009?
Answer:

Figure 6: Example prompt for graph-based models. We use Pprefix and Psuffix to denote the instruction before and
after the graph_node_embeddings respectively. The umber of graph node embeddings is dynamic and varies based
on evidence that has been retrieved.
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