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Abstract

We present a memory-based model for
context-dependent semantic parsing. Previ-
ous approaches focus on enabling the de-
coder to copy or modify the parse from the
previous utterance, assuming there is a de-
pendency between the current and previous
parses. In this work, we propose to repre-
sent contextual information using an external
memory. We learn a context memory con-
troller that manages the memory by main-
taining the cumulative meaning of sequential
user utterances. We evaluate our approach on
three semantic parsing benchmarks. Experi-
mental results show that our model can better
process context-dependent information and
demonstrates improved performance without
using task-specific decoders.

1 Introduction

Semantic parsing is the task of converting natu-
ral language utterances into machine interpretable
meaning representations such as executable queries
or logical forms. It has emerged as an impor-
tant component in many natural language inter-
faces (Ozcan et al., 2020) with applications in
robotics (Dukes, 2014), question answering (Zhong
et al., 2018; Yu et al., 2018b), dialogue systems
(Artzi and Zettlemoyer, 2011), and the Internet of
Things (Campagna et al., 2017).

Neural network based approaches have led to sig-
nificant improvements in semantic parsing (Zhong
et al., 2018; Kamath and Das, 2019; Yu et al.,
2018b; Yavuz et al., 2018; Yu et al., 2018a) across
domains and semantic formalisms. The majority of
existing studies focus on parsing utterances in iso-
lation, and as a result they cannot readily transfer
in more realistic settings where users ask multi-
ple inter-related questions to satisfy an information
need. In this work, we study context-dependent
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semantic parsing focusing specifically on text-to-
SQL generation, which has emerged as a popular
application area in recent years.

Figure 1 shows a sequence of utterances in an
interaction. The discourse focuses on a specific
topic serving a specific information need, namely
finding out which Continental flights leave from
Chicago on a given date and time. Importantly,
interpreting each of these utterances, and mapping
them to a database query to retrieve an answer
needs to be situated in a particular context as the
exchange proceeds. The topic further evolves as
the discourse transitions from one utterance to the
next and constraints (e.g., TIME or PLACE) are
added or revised. For example, in Q2 the TIME
constraint before 10am from Q1 is revised to before
noon, and in Q3 to before 2pm. Aside from such
topic extensions (Chai and Jin, 2004), the interpre-
tation of Q2 and Q3 depends on Ql1, as it is implied
that the questions concern Continental flights that
go from Chicago to Seattle, not just any Continen-
tal flights, however the phrase from Chicago to
Seattle is elided from Q2 and Q3. The interpreta-
tion of Q4 depends on Q3 which in turn depends
on Q1. Interestingly, Q5 introduces information
with no dependencies on previous discourse and
in this case, relying on information from previous
utterances will lead to incorrect SQL queries.

The problem of contextual language processing
has been most widely studied within dialogue sys-
tems where the primary goal is to incrementally
fill pre-defined slot-templates, which can be then
used to generate appropriate natural language re-
sponses (Gao et al., 2019). But the rich seman-
tics of SQL queries makes the task of contextual
text-to-SQL parsing substantially different. Pre-
vious approaches (Suhr et al., 2018; Zhang et al.,
2019) tackle this problem by enabling the decoder
to copy or modify the previous queries under the
assumption that they contain all necessary context
for generating the current SQL query. The utter-



Q1: What Continental flights
twenty sixth

to Seattle before 10 am in morning 1993 February

SQLI1: ( SELECT DISTINCT flight.flight_id FROM flight WHERE ( flight.airline_code =’ CO’ AND

AND ( flight . to_airport IN ( SELECT airport_service . airport_code FROM
airport_service WHERE airport_service . city_code IN ( SELECT city . city_code FROM city
WHERE city.city_name = ’SEATTLE’ )) AND ( flight.departure_time < 1000)))));

Q2: Continental flights before noon that have a meal

Q3: Continental flights before 2 pm

Q4: On 1993 February twenty seventh

Q5: All Continental flights leaving Chicago before 8 am on 1993 February twenty seventh

Figure 1: Example utterances from a user interaction in the ATIS dataset. Utterance segments referring
to the same entity or objects are in same color. SQL queries corresponding to Q2-Q5 follow a pattern
similar to Q1 and are not shown for the sake of brevity.

ance history is encoded in a hierarchical manner
and although this is a good enough approximation
for most queries (in existing datasets), it is not
sufficient to model long-range discourse phenom-
ena (Grosz and Sidner, 1986).

Our own work draws inspiration from Kintsch
and van Dijk’s (1978) text comprehension model.
In their system the process of comprehension in-
volves three levels of operations. Firstly, smaller
units of meaning, i.e., propositions, are extracted
and organized into a coherent whole (microstruc-
ture); some of these are stored in a working mem-
ory buffer and allow to decide whether new in-
put overlaps with already processed propositions.
Secondly, the gist of the whole is condensed
(macrostructure). And thirdly, the previous two
operations generate new texts in working with the
memory. In other words, the (short and long term)
memory of the reader gives meaning to the text
read. They propose three macro rules, viz., dele-
tion, generalization, and construction as essential
to reduce and organize the detailed information of
the microstructure of the text. Furthermore, previ-
ous knowledge and experience are central to the
interpretation of text enabling the reader to fill in-
formation gaps.

Our work borrows several key insights from
Kintsch and van Dijk (1978) without being a di-
rect implementation of their model. Specifically,
we also break down input utterances into smaller

units, namely phrases, and argue that this infor-
mation can be effectively utilized in maintaining
contextual information in an interaction. Further-
more, the notion of a memory buffer which can be
used to store and process new and old information
plays a prominent role in our approach. We pro-
pose a Memory-based ContExt model (which we
call MemCE for short) for keeping track of con-
textual information, and learn a context memory
controller that manages the memory. Each inter-
action (sequence of user utterances) maintains its
context using a memory matrix. User utterances
are segmented into a sequence of phrases repre-
senting either new information to be added into
the memory (e.g., that have a meal in Figure 1) or
old information which might conflict with current
information in memory and needs to be updated
(e.g., before 10 am should be replaced with before
noon in Figure 1). Our model can inherently add
new content to memory, read existing content by
accessing the memory, and update old information.

We evaluate our approach on the ATIS (Suhr
et al., 2018; Dahl et al., 1994), SParC (Yu et al.,
2019b), and CoSQL (Yu et al., 2019a) datasets. We
observe performance improvements when we com-
bine MemCE with existing models underlying the
importance of more specialized mechanisms for
processing context information. In addition, our
model brings interpretability in how the context
is processed. We are able to inspect the learned



memory controller and analyze whether important
discourse phenomena such as coreference and el-
lipsis are modeled.

2 Related Work

Sequence-to-sequence neural networks (Bahdanau
et al., 2015) have emerged as a general modeling
framework for semantic parsing, achieving impres-
sive results across different domains and semantic
formalisms (Dong and Lapata 2016; Jia and Liang
2016; Iyer et al. 2017; Wang et al. 2020; Zhong
et al. 2018; Yu et al. 2018b, inter alia). The ma-
jority of existing work has focused on mapping
natural language utterances into machine-readable
meaning representations in isolation without utiliz-
ing context information. While this is useful for
environments consisting of one-shot interactions of
users with a system (e.g., running QA queries on
a database), many settings require extended inter-
actions between a user and an automated assistant
(e.g., booking a flight). This makes the one-shot
parsing model inadequate for many scenarios.

In this paper we are concerned with the lesser
studied problem of contextualized semantic parsing
where previous utterances are taken into account in
the interpretation of the current utterance. Earlier
work (Miller et al., 1996; Zettlemoyer and Collins,
2009; Srivastava et al., 2017) has focused on sym-
bolic features for representing context, e.g., by ex-
plicitly modeling discourse referents, or the flow
of discourse. More recent neural methods extend
the sequence-to-sequence architecture to incorpo-
rate contextual information either by modifying the
encoder or the decoder. Context-aware encoders re-
sort to concatenating the current utterance with the
utterances preceding it (Suhr et al., 2018; Zhang
etal., 2019) or focus on the history of the utterances
most relevant to the current decoder state (Liu et al.,
2020). The decoders take context representations
as additional input and often copy segments from
the previous query (Suhr et al., 2018; Zhang et al.,
2019). Hybrid approaches (Iyyer et al., 2017; Guo
etal., 2019; Liu et al., 2020; Lin et al., 2019) em-
ploy neural networks for representation learning
but use a grammar for decoding (e.g., a sequence
of actions or an intermediate representation).

A tremendous amount of work has taken place
in the context of discourse modeling focusing
on extended texts (Mann and Thompson, 1988;
Hobbs, 1985) and dialogue (Grosz and Sidner,
1986). Kintsch and van Dijk (1978) study the men-

tal operations underlying the comprehension and
summarization of text. They introduce proposi-
tions as the basic unit of text representation, and
a model of how incoming text is processed given
memory limitations; texts are reduced to impor-
tant propositions (to be recalled later) using macro-
operators (e.g., addition, deletion). Their model
has met with popularity in cognitive psychology
(Baddeley, 2007) and has also found application in
summarization (Fang and Teufel, 2016).

Our work proposes a new encoder for contextual-
ized semantic parsing. At the heart of our approach
is amemory controller which keeps track of context
via writing new information and updating old infor-
mation. Our memory-based approach is inspired by
Kintsch and van Dijk (1978) and is closest to San-
toro et al. (2016), who use a memory augmented
neural network (Weston et al., 2015; Sukhbaatar
et al., 2015) for meta-learning. Specifically, they
introduce a method for accessing external memory
which functions as short-term storage for meta-
learning. Although we report experiments solely
on semantic parsing, our encoder is fairly general
and could be applied to other context-dependent
tasks such as conversational information seeking
(Dalton et al., 2020) and information retrieval (Sun
and Chai, 2007; Voorhees, 2004).

3 Model

Our model is based on the encoder-decoder archi-
tecture (Cho et al., 2015) with the addition of a
memory component (Sukhbaatar et al., 2015; San-
toro et al., 2016) for incorporating context. Let
I = [X;,Y;]?, denote an interaction such that X;
is the input utterance and Y; is the output SQL at
interaction turn /[i]. At each turn ¢, given X; and
all previous turns I[1 . ..i—1], our task is to predict
SQL output Y.

As shown in Figure 2, our model consists of four
components, (1) a memory matrix retains discourse
information, (2) a memory controller, learns to ac-
cess and manipulate the memory such that correct
discourse information is retained, (3) utterance and
phrase encoders, and (4) a decoder which interacts
with the memory and utterance encoder using an
attention mechanism to generate SQL output.

3.1 Input Encoder

Each input utterance X; = (71 ...7;)x,|) is en-
coded using a bi-directional LSTM (Hochreiter and



SELECT DISTINCT flight.flight_id FROM flight WHERE ( flight.airline_code ... <—— —
I I

Utterance:

What Continental flights go from
Chicago to Seattle before 10 am

Attention + Copy ‘ ’ Attention ‘

in morning 1993 February
twenty sixth

Utterance
Encoder

Extract phrases

Phrase Encoder

Phrase Encoder

Phrase Encoder

Context
update

Phrase Encoder
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Figure 2: Overview of model architecture. Utterances are broken down into segments. Each segment
is encoded with the same encoder (same weights) and is processed independently. The context update
controller learns to manipulate the memory such that correct discourse information is retained.

Schmidhuber, 1997),
Wiy = BILSTMY (es 5 hl; 1) (1)

where, e; j = ¢(x; ;) is a learned embedding corre-
sponding to input token x; ; and hgj is the concate-
nation of the forward and backward LSTM hidden
representations at step j. As mentioned earlier,
X; is also segmented into a sequence of phrases
denoted as X; = (p} ... pX), where K is the num-
ber of phrases for utterance X;. We provide details
on how utterances are segmented into phrases in
Section 4. For now, suffice it to say that they are
obtained from the output of a chunker with some
minimal postprocessing (e.g., to merge postmod-
ifiers with NPs or VPs). Each phrase consists of
tokens pf = (xi’[Sk:Skam), such that k € [1, K]

and sg, = le;% |p?|. Each phrase pf is separately
encoded using a bi-directional LSTM,

hix; = bILSTM” (¢; ;; hfmfl) 2)

such that j € [sy, : sg + |p¥|]. As shown in Fig-
ure 2, every phrase pf in utterance 7 is separately
encoded using biLSTM? to obtain a phrase repre-
sentation th . by concatenating the final forward
and backward hidden representations.

3.2 Context Memory

Our context memory is a matrix M; € RI*?

with L memory slots, each of dimension d, where ¢

is the state of the memory matrix at the 7* interac-
tion turn. The goal of context memory is to main-
tain relevant information required to parse the input
utterance at each turn. As shown in Figure 2, this
is achieved by learning a context update controller
which is responsible for updating the memory at
each turn.

For each phrase p? belonging to a sequence of
phrases within utterance X, the controller decides
whether it contains old information which conflicts
with information present in the memory or new
information which has to be added to the current
context. When novel information is introduced, the
controller should add it to an empty or least-used
memory slot, otherwise the conflicting memory
slot should be updated with the latest information.
Let ¢ denote the memory update time step such that
t € [1,n], where n is the total number of phrases
in interaction I. We simplify notation, using h!" in-
stead of th 1.» to represent the hidden representation
ofa phrasé at time .

Detecting Conflicts Given phrase representa-
tion hf (see Equation (2)), we use a similarity
module to detect conflicts between i} and every
memory slot in M;(m) where m € [1, L]; M;(m)
is the m'" row representing a memory slot in the
memory matrix. Intuitively, low similarity repre-
sents new information. Our similarity module is



based on a Siamese network architecture (Brom-
ley et al., 1994) that takes phrase hidden repre-
sentation h{" and memory slot M;(m) and com-
putes a low-dimensional representation using the
same neural network weights. The resulting low-
dimensional representations are then compared us-
ing the cosine distance metric:

atme sia(hf) -sia(M;(m))
© max(|| sia(h)) [l2 - || sia(M;i(m)) [|2, €)

3)

where € is a small value for numerical stability and
sia is a multi-layer feed-forward network with a
tanh activation function. For hidden representa-
tion h, sia is computed as:

h = W (tanh(W'h +b') +b) (4)

where [ represents the layer number and W, o', W,
and b are learnable parameters. We use L™ to ob-
tain a similarity distribution w’, for updating step ¢
over memory slots. w’ represents the probability
of dissimilarity (or conflict) which is calculated by
computing softmax over cosine similarities with
every memory slot m € [1..L]:

t

— t,1
. =

t,2
4 ..

w! = softmax([wht; wh? .. b)) (5)

We compute softmax over cosine values so that the
linear combination of w’ with least used weights
w},, (described below in the memory update para-
graph) still represents the probability of update
across each memory slot.

Adding New Information To add new informa-
tion to the memory, i.e., when there is no conflict
with any locations, we need to ascertain which
memory locations are either empty or rarely used.
When the memory is full, i.e., all memory slots
are used during previous updates, we update the
slot which was least used. This is accomplished by
maintaining memory usage weights w! € R’ at
each update ¢; w!, is initialized with zeros at ¢ = 0
and is updated by combining previous memory us-
age weights w!~! with current write weight w’,

u
using a decay parameter \:

to_ ot t—1
w,, = W, + Aw,

(6)

where write weights w!, are used to compute the
write location and are described in the memory
update paragraph below. The least used weight
vector w},, at update step ¢t is then calculated as:

(7

wfu = softmin(wz_l)

where for vector z we calculate softmin(z) =
exp(—xz)/ >_; exp(—z;). Hard updates, i.e., us-
ing smallest instead of softmin are also possible.
However, we found softmin to be more stable dur-
ing learning.

Memory Update We wish to compute write lo-
cation w!, given least used weight vector w}, and
conflict probability distribution w. Notice that w’
and w], are essentially two probability distribu-
tions each representing a candidate write location
in memory. We learn a convex combination param-
eter ;1 which depends on w?,

p=o(Wyws + by)
w, = softmax((pw’, + (1 — p)w},)/T)

®)
(©))

where temperature hyperparameter 7 is used to
peak the write location. Finally, the memory is
updated with current phrase representation h! as,

M (m)=M;""(m)+w,(m)h{ ,Yme[l, L] (10)

3.3 Decoder

The output query is generated with an LSTM de-
coder. As shown in Figure 2, the decoder depends
on the memory and utterance representations com-
puted using Equations (10) and (1), respectively.
The decoder state at time step s is computed as:

hY = LSTM([¢°(yi,s—1); M ys e 452 1) (1)

where ¢° is a learned embedding function for
output tokens, c/ is an utterance context vector,
cM | is a memory context vector, and h” , is the
previous decoder hidden state. ¢! is calculated as
the weighted sum of all hidden states, where o is

S
the utterance state attention score:

vs(j) = h;WAnP (12)
a¥ = softmax(vs) (13)
& = hijal(j) (14)

J
Memory state attention score o} and memory con-
text vector ¢ are computed in a similar manner
using memory slots as hidden states'. The proba-

bility of output query tokens is computed as:

P(w; 5| X;,Y;, I[: i — 1]) o<
exp(tanh ([h2; c¥V; MIWOYW® + b°)

§717817s

'In experiments we found that using the (raw) memory
directly is empirically better to encoding it with an LSTM.



We further modify the decoder in order to deal
with the large number of database values (e.g., city
names) common in text-to-SQL semantic parsing
tasks. As described in Suhr et al. (2018), we
add anonymized token attention scores in the out-
put vocabulary distribution which enables copying
anonymized tokens mentioned in input utterances.
The final probability distribution over output vo-
cabulary tokens and anonymized tokens is:

P(w; s) = softmax(P(w; s) @ P(ais)) (15)
where @ represents concatenation and P(a; ) are
anonymized token attention scores in the attention
distribution ¥/

-
3.4 Training

Our model is trained in an end-to-end fashion using
a cross-entropy loss. Given a training set of V in-
teractions {7)}}Y |, such that each interaction 1)

consists of utterances XZ.(Z) = (:L'El} ..

-l‘i,|xi|(l>)
ired with : @ _ 0 )
paired with output queries Y; = (y; ...y, \Y'I)’

we minimize token cross-entropy loss as:

L") = _zogP(g%xE”, yz(,l,l,l[: i—1]) (16)

where, gjl(l,l denotes the predicted output token
and k is the gold output token index. The total
loss is the average of the utterance level losses used
for back-propagation.

4 Experimental Setup

We evaluated MemCE, our memory-based context
model, on various settings by integrating it with
multiple open-source models. We achieve this by
replacing the discourse component of related mod-
els with MemCE subject to minor or no additional
changes. All base models in our experiments use a
turn-level hierarchical encoder to capture previous
language context. For primary evaluation, we use
the ATIS (Hemphill et al., 1990; Dahl et al., 1994)
dataset but also present results on SParC (Yu et al.,
2019b) and CoSQL (Yu et al., 2019a).

Utterance Segmentation We segment each in-
put utterance into a sequence of phrases with a
pretrained chunker and then apply a simple rule-
based merging procedure to create bigger chunks as
an approximation to propositions (Kintsch and van
Dijk, 1978). Figure 3 illustrates the process. We
used the Flair chunker (Akbik et al., 2018) trained
on Conll-2000 (Tjong Kim Sang and Buchholz,

What Continental flights go from
Chicago to Seattle before 10 am in
morning 1993 February twenty sixth.

iChunking

[What], [Continental flights], [go], [from],
[Chicago], [to], [Seattle], [before], [10 am],
[in],[morning 1993 February twenty sixth.]

lMerge

[What Continental flights], [go], [from
Chicago], [to Seattle], [before 10 am], [in
morning 1993 February twenty sixth.]

Figure 3: Example of sentence segmentation using
chunking and rule-based merging.

2000) to identify NP and VP phrases without post-
modifiers. Small chunks (e.g., from, before in the
figure) were subsequently merged into segments
using the following rules and NLTK’s (Bird et al.,
2009) tag-based regex merge:

R1: left = (V P.x),right = (VP.x)
R2: left = (PP.x)|(NP.x),right = (NP)+
R3: left = (N P.x),right = (V B.x)
R4: left = (AD.x),right = (N P.x)

The rules above are applied in order. For each
rule we find any chunk whose end matches the
left pattern followed by a chunk whose beginning
matches the right pattern. Chunks that satisfy this
criterion are merged.

We segment utterances and anonymize entities
independently and then match entities within seg-
ments deterministically. This step is necessary to
robustly perform anonymization as in some rare
cases, the chunking process will separate entities
in two different phrases (e.g., in Long Beach Cali-
fornia that is chunked as in Long Beach and Cali-
fornia that). This is easily handled by a simple
token number matching procedure between the
anonymized utterance and corresponding phrases.

Model Configuration Our model is imple-
mented in PyTorch (Paszke et al., 2019). For all ex-
periments, we used the ADAM optimizer (Kingma
and Ba, 2015) to minimize the loss function and
the initial learning rate was set to 0.001. Dur-
ing training, we used the ReduceLROnPlateau
learning rate scheduling strategy on the validation



loss, with a decay rate of 0.8. We also applied
dropout with 0.5 probability. Dimensions for the
word embeddings were set to 300. Following pre-
vious work (Zhang et al., 2019) we use pretrained
GloVe (Pennington et al., 2014) embeddings for
our main experiments on the SparC and CoSQL
datasets. For ATIS, word embeddings were not
pretrained (Suhr et al., 2018; Zhang et al., 2019).
Memory length was chosen as a hyperparameter
from the range [15, 25] and the temperature param-
eter was chosen from {0.01, 0.1}. Best memory
length values for ATIS, SparC, and CoSQL were
25, 16, and 20, respectively. The RNN decoder is a
two-layer LSTM and the encoder is a single layer
LSTM. The Siamese network in the module which
detects conflicting slots uses two hidden layers.

5 Results

In this section, we assess the effectiveness of the
MemCE encoder at handling contextual informa-
tion. We present our results, evaluation methodol-
ogy, and comparisons against the state of the art.

5.1 Evaluation on ATIS

We primarily focus on ATIS because it contains
relatively long interactions (average length is 7)
compared to other datasets (e.g, the average length
in SParC is 3). Longer interactions present multi-
ple challenges that require non-trivial processing of
context, some of which are discussed in Section 6.
We use the ATIS dataset split created by Suhr et al.
(2018). It contains 27 tables and 162K entries with
1,148/380/130 train/dev/test interactions. The se-
mantic representations are in SQL.

Following Suhr et al. (2018), we measure query
accuracy, strict denotation accuracy, and relaxed
denotation accuracy. Query accuracy is the per-
centage of predicted queries that match the refer-
ence query. Strict denotation accuracy is the per-
centage of predicted queries that when executed
produce the same results as the reference query.
Relaxed accuracy also gives credit to a prediction
query that fails to execute if the reference table is
empty. In cases where the utterance is ambiguous
and there are multiple gold queries, the query or
table is considered correct if they match any of the
gold labels. We evaluate on both development and
test set, and select the best model during training
via a separate validation set consisting of 5% of the
training data.

Table 1 presents a summary of our results.

We compare our approach against a simple
Seq2Seq model which is a baseline encoder-
decoder without any access to contextual informa-
tion. Seq2Seq+Concat is a strong baseline which
consists of an encoder-decoder model with atten-
tion on the current and the previous three concate-
nated utterances. We also compare against the mod-
els of Suhr et al. (2018) and Zhang et al. (2019).
The former employs a turn-level encoder on top of
an utterance-level encoder in a hierarchical fash-
ion together with a decoder which learns to copy
complete SQL segments from the previous query
(SQL segments between consecutive queries are
aligned during training using a rule-based proce-
dure). The latter enhances the turn-level encoder
by employing an attention mechanism across dif-
ferent turns and additionally introduces a query
editing mechanism which decides at each decoding
step whether to copy from the previous query or
insert a new token. Column Enc-Dec in Table 1
describes the various models in terms of the type of
encoder/decoder used. LSTM is a vanilla encoder
or decoder, HE is a turn-level hierarchical encoder,
and Mem is the proposed memory-based encoder.
SnipCopy and EditBased respectively refer to Suhr
et al.’s (2018) and Zhang et al.’s (2019) decoders.
We present two instantiations of our MemCE model
with a simple LSTM decoder (Mem-LSTM) and
SnipCopy (Mem-SnipCopy). For the sake of com-
pleteness, Table 1 also reports the results from Lin
et al. (2019) who apply a grammar-based decoder
to this task; they also incorporate the interaction
history by concatenating the current utterance with
the previous three utterances which are encoded
with a bi-directional LSTM. All models in Table 1
use entity anonymization, Lin et al. (2019) addi-
tionally use identifier linking, i.e., string match-
ing heuristic rules to link words or phrases in
the input utterance to identifiers in the database
(e.g., city_name_string -> “BOSTON").

As shown in Table 1, MemCE is able to out-
perform comparison systems. We observe a boost
in denotation accuracy when using the SnipCopy
decoder instead of an LSTM-based one, however,
exact match does not improve. This is possibly
because SnipCopy makes it easier to generate long
SQL queries by copying segments, but at the same
time it suffers from spurious generation and error
propagation.

Table 3 presents various ablation studies which
evaluate the contribution of individual model com-



Dev Set Test Set

Model Enc-Dec Denotation Denotation

Query Relaxed Strict Query Relaxed Strict
Seq2Seq LSTM-LSTM 28.7 48.8 432 35.7 56.4 53.8
Seq2Seq+Concat LSTM-LSTM 35.1 59.4 56.7 422 66.6 65.8
Suhr et al. (2018) HE-LSTM 36.0 59.5 58.3 — — —
Suhr et al. (2018) HE-SnipCopy 37.5 63.0 62.5 43.6 69.3 69.2
Zhang et al. (2019) HE-EditBased 36.2 60.5 60.0 439 68.5 68.1
Lin et al. (2019) LSTM-Grammar 39.1 — 65.8 44.1 — 73.7
MemCE | Mem-LSTM 402 636 612 470 701 689
MemCE Mem-SnipCopy 39.1 65.5 65.2 453 70.2 69.8

Table 1: Model accuracy on the ATIS dataset. HE is a hierarchical interaction encoder, while Mem is the
proposed memory-based encoder. LSTM are vanilla encoder/decoder models, while SnipCopy copies
SQL segments from the previous query and EditBased adopts a query editing mechanism.

Model Enc.Dec CSSQL(]I)) C((;SQL(”IF) SgarC(DI) zparC(TI) SgarC—DI(IT)
CDS2S HE-LSTM 138 21 139 26 219 81 232 75 [395 201
CDS2S HE-SnipCopy 123 21 — — 217 95 203 81 |387 24
Liu et al. (2020) HE-Grammar 335 96 — — 418 206 — — |571 353
MemCE+CDS2S Mem-LSTM 134 34 — — 212 88 — — |413 229
MemCE+CDS2S Mem-SnipCopy 13.1 2.7 — — 214 109 — — |415 267
MemCE+Liu etal. (2020) Mem-Grammar 32.8 10.6 284 62 424 21.1 403 167|557 363

Table 2: Query (Q) and Interaction (I) accuracy for SParC and CoSQL. We report results on the devel-
opment (D) and test (T) sets. Sparc-DI is our domain-independent split of SparC. HE is a hierarchical
encoder and Mem is the proposed memory-based context encoder. LSTM is a vanilla decoder, SnipCopy
copies SQL segments from the previous query, and Grammar refers to a decoder which outputs a sequence
of grammar rules rather than tokens. Table cells are filled with — whenever results are not available.

ponents. We use Mem-SnipCopy as our base model
and report performance on the ATIS development
set following the configuration described in Sec-
tion 4. We first remove the proposed memory con-
troller described in Section 3.2 and simplify Equa-
tion (9) using key-value based attention to calculate
w!, as,

a7)
(18)

aj = MITHGHWERD
t _

w softmax(«)
We observe a decrease in performance (see second
row in Table 3) indicating that the proposed mem-
ory controller is helpful in maintaining interaction
context.

We performed two ablation experiments to eval-
uate the usefulness of utterance segmentation.
Firstly, instead of the phrases extracted from our
segmentation procedure, we employ a variant of
our model which operates over individual tokens
(see row “phrases are utterance tokens” in Table 3).
As can be seen, this strategy is not optimal as re-
sults decrease across metrics. We believe operating

directly on tokens can lead to ambiguity during up-
date. For example, when processing current phrase
to Boston given previous utterance What Conti-
nental flights go from Chicago to Seattle, it is not
obvious whether Boston should update Chicago
or Seattle. Secondly, we do not use any segmenta-
tion at all, not even at the token level. Instead, we
treat the entire utterance as a single phrase (see row
“phrases are full utterances” in Table 3). If mem-
ory’s only function is to simply store utterance en-
codings, then this model becomes comparable to a
hierarchical encoder with attention. Again, we ob-
serve that performance decreases which indicates
that our system benefits from utterance segmenta-
tion. Overall, the ablation studies in Table 3 show
that segmentation and its granularity matters. Our
heuristic procedure works well for the task at hand,
although a learning-based method would be more
flexible and potentially lead to further improve-
ments. However, we leave this to future work.



Denotation
Query Relaxed Strict
MemCE+SnipCopy 39.1 65.5 65.2

Without memory controller 343 58.7 58.1
Phrases are utterance tokens  37.2 61.9 61.7
Phrases are full utterances 36.8 64.2 63.9

Table 3: Ablation results with SnipCopy decoder
on the ATIS development set.

Train Dev Test
#Interactions 2869 290 290
#Utterances 8535 851 821

Table 4: Statistics for SParC-DI domain-

independent split which has 157 domains in total.

5.2 Evaluation on SParC and CoSQL

In this section we describe our results on SParC
and CoSQL. Both datasets assume a cross-domain
semantic parsing task in context with SQL as the
meaning representation. In addition, for ambigu-
ous utterances, (which cannot be uniquely mapped
to SQL given past context) CoSQL also includes
clarification questions (and answers). We do not
tackle these explicitly but consider them part of
the utterance preceding them (e.g., please list the
singers | did you mean list their names? | yes).
Since our primary objective is to study and mea-
sure context-dependent language understanding,
we created a split of SParC which is denoted as
SParC-DI’> where domains are all seen in train-
ing, development, and test set. In this way we
ensure that no model has the added advantage of
being able to handle cross-domain instances while
lacking context-dependent language understanding.
Table 4 shows the statistics of our SParC-DI split,
following a ratio of 80/10/10 percent for the train-
ing/development/test set.

We evaluate model output using exact set match
accuracy (Yu et al., 2019b).> We report two met-
rics: question accuracy which is the accuracy con-
sidering all utterances independently, and inferac-
tion accuracy which is the correct interaction accu-
racy averaged across interactions. An interaction
is marked as correct if all utterances in that interac-
tion are correct. Since utterances in an interaction
can be semantically complete (i.e., independent of

2We only considered training and development instances
as the test set is not publicly available.

*Predicted queries are decomposed into different SQL
clauses and scores are computed for each clause separately.

MemCE Suhr et al. (2018)

Denotation Query Denotation Query
Focus Shift 80.4 50.0 76.7 44.6
Referring Exp 80.0 40.0 70.0 20.0
Ellipsis 69.4 333 66.6 25.0
Independent 81.4 61.1 81.3 62.7

Table 5: Model accuracy on specific phenomena
(20 interactions, ATIS dev set).

context), we prefer interaction accuracy.

Table 2 summarizes our results. CDS2S is the
context-dependent cross-domain parsing model of
Zhang et al. (2019). It is is adapted from Suhr
et al. (2018) to include a schema encoder which is
necessary for SparC and CoSQL. It also uses a turn-
level hierarchical encoder to represent the interac-
tion history. We also report model variants where
the CDS2S encoder is combined with an LSTM-
based encoder, SnipCopy (Suhr et al., 2018) and a
grammar-based decoder Liu et al. (2020). The lat-
ter decodes SQL queries as a sequence of grammar
rules, rather than tokens. We compare the above
systems with three variants of our MemCE model
which differ in their use of an LSTM decoder, Snip-
Copy, and the Grammar-based decoder of Liu et al.
(2020).

Across models and datasets we observe that
MemCE improves performance which suggests
that it better captures contextual information as an
independent language modeling component. We
observe that benefits from our memory-based en-
coder persist across domains and data splits even
when sophisticated strategies like grammar-based
decoding are adopted.

6 Analysis

In this section, we analyze our model’s ability to
handle important discourse phenomena such as fo-
cus shift, referring expressions, and ellipsis. We
also showcase its interpretability by examining the
behavior of the (learned) memory controller.

6.1 Focus Shift

Our linguistic analysis took place on 20 interac-
tions* randomly sampled from the ATIS develop-
ment set (134 utterances in total). Table 5 shows
overall performance statistics for MemCE (Mem-
LSTM) and Suhr et al. (2018) (HE-SnipCopy) on
our sample. We annotated the focus of attention in
each utterance (underlined in the example below)

“Interactions with less than two utterances were discarded.



= Q1I: Continental Q2: Show Q3: Only
5 | airlines on 1993 1993 February flights after
f: February twenty twenty 1700 hours
S | Seventh from eighth
®? | Chicago to Seattle = flights from
E’ Seattle to
g Chicago
[5)
=
0 Continental Continental Only flights
airlines airlines
1 on 1993 February | Show 1993 Show 1993
twenty February twenty February
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2 from Chicago from Seattle
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from Seattle

Q4: Only QS5: Only Q6: Show Q7: Only
flights after flights after all 1993 those on
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Show 1993 Show 1993 Show all Show all
February February 1993 1993
twenty twenty February February
eighth eighth flights | twenty twenty
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to Chicago to Chicago to Chicago to Chicago
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after 1700 after 1500 after 1500 after 1500
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] ] on on
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Figure 4: Visualization of memory matrix. Rows represent memory content and columns represents
the utterance time step. The top row shows the utterances being processed. Each row is marked with a
memory slot number which represents the content of memory in that slot. Empty slots are marked with
¢. The bottom row shows whether the utterance was parsed correctly(v’) or not(X). |:|: Stale content in
memory w.r.t the current utterance. [[]: Incorrect substitution.

which we operationalized as the most salient entity
(e.g., city) within the utterance (Grosz et al., 1995).
Focus shift occurs when the attention transitions
from one entity to another. In the interaction below
the focus shifts from flights in Q2 to cities in Q3.

Q1: What flights are provided by American airlines

Q2: What flights are provided by Delta airlines

Q3: Which cities are serviced by both American
and Delta airlines

Handling focus shift has been problematic in the
context of semantic parsing (Suhr et al., 2018). In
our sample, 41.8% of utterances displayed focus
shift. Our model was able to correctly parse all ut-
terances in the interaction above and is more apt at
handling focus shifts compared to related systems
(Suhr et al., 2018). Table 5 reports denotation and
query accuracy on our analysis sample.

6.2 Referring Expressions and Ellipsis

Ellipsis refers to the omission of information from
an utterance that can be recovered from the con-
text. In the interaction below, Q2 and Q3 exem-
plify nominal ellipsis, the NP all flights from Long
Beach to Memphis is elided and ideally should be
recovered from the discourse, in order to generate
correct SQL queries. Q4 is an example of coref-
erence, they refers to the answer of Q3. However,
it can also be recovered by considering all previ-
ous utterances (i.e., Where do they [flights from
Long Beach to Memphis; any day] stop). Since our
model explicitly stores information in context, it is
able to parse utterances like Q2 and Q4 correctly.

QI: Please give me all flights from Long Beach to
Memphis

Q2: What about 1993 June thirtieth

Q3: How about any day

Q4: Where do they stop

In our ATIS sample, 26.8% of the utterances



exhibited ellipsis and 7.5% contained referring ex-
pressions. Results in Table 5 show that MemCE is
able to better handle both such cases.

6.3 Memory Interpretation

In this section we delve into the memory controller
with the aim of understanding what kind of patterns
it learns and where it fails. In Figure 4, we visualize
the content of memory for an interaction (top row)
from the ATIS development set consisting of seven
utterances.> Each column in Figure 4 shows the
content of memory after processing the correspond-
ing utterance in the interaction. The bottom row
indicates whether the final output was correct (v)
or not (X). For the purpose of clear visualization we
took the max instead of softmax in Equation (8)
to obtain the memory state at any time step.

Q2 presents an interesting case for our model, it
is not obvious whether Continental airlines from
Q1 should be carried forward while processing Q2.
The latter is genuinely ambiguous, it could be refer-
ring to Continental airlines flights or to flights by
any carrier leaving from Seattle to Chicago. If we
assume the second interpretation, then Q2 is more
or less semantically complete and independent of
Q1. 44% of utterances in our ATIS sample are se-
mantically complete. Although we do not explicitly
handle such utterances, our model is able to parse
many of them correctly because they usually repeat
the information mentioned in previous discourse
as a single query (see Table 5). Q2 also shows that
the memory controller is able to learn the similarity
between long phrases: on 1993 February twenty
Seventh < Show 1993 February twenty eighth
flights. It also demonstrates a degree of seman-
tic understanding, i.e., it replaces from Chicago
with from Seattle in order to process utterance Q2,
rather than simply relying on entity matching.

Figure 4 further shows the kind of mistakes the
controller makes which are mostly due to stale con-
tent in memory. In utterance Q6 the memory carries
over the constraint after 1500 hours from the previ-
ous utterance which is not valid since Q6 explicitly
states Show all . . . flights on Continental. At the
same time constraints from Seattle and to Chicago
should carry forward. Knowing which content to
keep or discard makes the task challenging.

Another cause of errors relates to reinstating pre-
viously nullified constraints. In the interaction be-

Q4 was repeated in the dataset. We do the same to main-
tain consistency and to observe the effect of repetition.

low, Q3 reinstates from Seattle to Chicago, the
focus shifts from flights in Q1 to ground transporta-
tion in Q2 and then again to flights in Q3.

Q1: Show flights from Seattle to Chicago

Q2: What ground transportation is available in
Chicago

Q3: Show flights after 1500 hours

Handling these issues altogether necessitates a
non-trivial way of managing context. Given that
our model is trained in an end-to-end fashion, it
is encouraging to observe a one-to-one correspon-
dence between memory and the final output which
supports our hypothesis that explicitly modeling
language context is helpful.

7 Conclusions

In this paper, we presented a memory-based model
for context-dependent semantic parsing and evalu-
ated its performance on a text-to-SQL task. Analy-
sis of model output revealed that our approach is
able to handle several discourse related phenomena
to a large extent. We also analyzed the behavior of
the memory controller and observed that it corre-
lates with the model’s output decisions. Our study
indicates that explicitly modeling context can be
helpful for contextual language processing tasks.
Our model manipulates information at the phrase
level which can be too rigid for fine-grained up-
dates. In the future, we would like to experiment
with learning the right level of utterance segmenta-
tion for context modeling as well as learning when
to reinstate a constraint.
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